

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	LyricSeek 0.1 documentation

Welcome to LyriX’s documentation!

Contents:

	Plans for the library
	Retrievers

	Current status
	TODO:

	Needing documentation

	API Reference
	User API

	Developer API

	Plugin HOWTO
	Development mode

	Testing it easy

	Dependencies

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LyricSeek 0.1 documentation

Plans for the library

Note

Not all of this has been implemented yet. See Current status for more
informations. Pretty much everything that hasn’t the todo status is done

This is a sort of project of what the library should look like when finished.

	A decent name :)

	Low, if not none, dependencies

	There is a simple but powerful api

	get(artist='foo', album='asd', title='xyz', otherinfo='this', timeout=10)
Just do it.

	get(... as above ...)
The first site to give an ‘OK’ will return

	get(... plugins=('this', 'that'))

the user is able to “filter” from the set of plugins: this way
badly-behaving plugins can be avoided without uninstalling them

	
Todo

get_best(... as above ...)

Try to catch as much information as possible

	
Todo

get_all(... as above ...)

Return all results (useful for user selection) *

	
Todo

get(filename='/path/to/file.mp3, id3=True)

will automatically
discover album, artist, title information using file metadata. This will
work, however, only if eyed3 is installed

	It’s not limited to lyrics, but supports artist info, cover, tabs, whatsoever

	Extensibility is provided through eggs

	see http://base-art.net/Articles/64/ (only useful if you already know eggs)

	plugin are separate packages

	any package can contain entrypoint for our library

	each plugin is called a Retriever

	Retrievers run concurrently, results analysis is performed real*time

	This way we can take “the fastest”, or wait for the best

	
	An asyncronous API should be provided

	
	This way a software can see the lyrics coming in real*time when he is
calling get_all, not having to wait for all the lyrics to be fetched
(it is especially useful because there will probably some plugin behaving
badly, and we don’t want it to ruin our work).
And, yeah, there is timeout, but it’s not a complete solution

	
See also

Section on Retrievers

	
Todo

A command*line utility provides the same functionalities

	Different outputs (human, colour, parseable)

	
Todo

A C library that wraps the python one

Retrievers

A retriever is an object that can fetch lyrics, coverart or other stuff.
It is a class with a lot of metadata about his capabilities (optional),
and one mandatory static method, get_data

No subclassing is required, only conventional class attributes are needed.

Let’s see an example:

class FooRetriever(object):
 name = 'Foo will do'
 features = ('lyrics', 'coverart')

 @staticmethod
 def get_data(song_metadata, options)

The more interesting part is get_data: here all the fetching part is done.
Both his tho arguments, song_metadata and options are dict.
song_metadata has four main fields: artist, title, album,
filename. Some of them could be None.
options has currently only one field, but it may grow:

	searching A tuple containing what the user wants (similar to features).
It can be useful to reduce time: suppose, for example, that your function can
fetch both lyrics and coverart, but is slow on the latter. If the user is
only searching lyrics, there’s no need to fetch coverart

To know how to create a retriever plugin, read Plugin HOWTO

setup.py

The setup.py you’ll find into the plugin skeleton is slightly modified
to make it more “automatic”: the entrypoint name is equal to Retriever.name,
and attempts are done to autoconfigure it.
If you have a complex file structure, or defines other classes than the Retriver one, it will probably fail.
It should be easy, anyway, to configure it!

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LyricSeek 0.1 documentation

Current status

The pluginsystem is basic, but OK.

get seems to work.

A plugin skeleton (with a short HOWTO in it) has been written and seems to
work; it still misses some features, though.

TODO:

Todo

get_best(... as above ...)

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/checkouts/latest/doc/source/plans.rst, line 24.)

Todo

get_all(... as above ...)

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/checkouts/latest/doc/source/plans.rst, line 27.)

Todo

get(filename='/path/to/file.mp3, id3=True)

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/checkouts/latest/doc/source/plans.rst, line 30.)

Todo

A command*line utility provides the same functionalities

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/checkouts/latest/doc/source/plans.rst, line 57.)

Todo

A C library that wraps the python one

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/checkouts/latest/doc/source/plans.rst, line 61.)

Todo

support plugin versions

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/lyricseek/envs/latest/local/lib/python2.7/site-packages/lyricseek/_pluginsystem.py:docstring of lyricseek._pluginsystem.load_plugins, line 3.)

Needing documentation

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LyricSeek 0.1 documentation

API Reference

User API

User API is just one function, nothing more to worry about!

The typical usage is:

import lyricseek
lyricseek.get(artist='The Beatles', title='Let it be', request=('lyrics',))

	
lyricseek.get(artist=None, album=None, title=None, otherinfo=None, request=(), timeout=None, filename=None, analyzer='first_match', plugin_filter=None)

	Get data about a song

	Parameters:	
	otherinfo (dict) – Other metadata, not worthing a function parameter

	request (tuple) – all needed metadata. If empty, all will be searched

	timeout – timeout in seconds, None for no timeout

	Return type:	dict

Developer API

This modules are meant to be used for internal developers, or for the user who
know what he is doing.

_run

Main module: provide simple, ready-to-use functions
to get lyrics

	
lyricseek._run.get_data(artist=None, album=None, title=None, otherinfo=None, request=(), timeout=None, filename=None, analyzer='first_match', plugin_filter=None)[source]

	Get data about a song

	Parameters:	
	otherinfo (dict) – Other metadata, not worthing a function parameter

	request (tuple) – all needed metadata. If empty, all will be searched

	timeout – timeout in seconds, None for no timeout

	Return type:	dict

	
lyricseek._run.get_ready_retrievers(artist=None, album=None, title=None, otherinfo=None, request=(), timeout=-1, filename=None, filter_=None)[source]

	
Note

this is not meant to be used by the casual user. Use it if
you are a developer or if you really know what you’re doing

This function will return an iterator over functions that take no arguments
and will try to get data (that is, retrievers with arguments filled in)

	Parameters:	
	otherinfo (dict) – Other metadata, not worthing a function parameter

	request (tuple) – all needed metadata. If empty, all will be searched

	timeout – currently not supported

	Return type:	iterator

	
lyricseek._run.set_parallel(method)[source]

	Allows to choose between process based and threading based concurrency

	Parameters:	method – can be ‘process’ or ‘thread’

	Raises ValueError:

		If an invalid argument is given

pluginsystem

This module provides access to plugins, metadata and other tools

	
lyricseek._pluginsystem.get_plugins()[source]

	

	Returns:	name:class dict of plugins (if loaded)

	
lyricseek._pluginsystem.load_plugins()[source]

	Searches for plugins, and load them into memory.

Todo

support plugin versions

	
lyricseek._pluginsystem.register_plugin(plugin)[source]

	
Warning

This is only intended for debug or dirty h4x.
If unsure, you shouldn’t use this

Register a plugin. Useful to add Retrievers without packing proper eggs

	Parameters:	
	name – The name of the plugin. In the standard case, this is the name
of the entrypoint

	plugin – the Retriever class implementing your plugin (must implement
the interface described in Retrievers

	Raises ValueError:

		If the check on the plugin fails

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	LyricSeek 0.1 documentation

Plugin HOWTO

You will find a “plugin skeleton”: it consists of a
setup.py plus the “real” plugin directory.

The plugin is basicly a class with a lot of metadata and one (static)method.
You should just fill-in metadata and code your method as you prefer.

To use the plugin, we use the egg system: for you, this means that you have to
build a “distribution” (a .egg file) for your plugin.
You can do it with python setup.py bdist_egg.
Then, anyone can install it using easy_install.

Development mode

If you are developing the plugin, you’ll probably find yourself continously
creating an egg and instaling it. This is boring!

It’s probably easier to do sudo python setup.py develop: this will create a
sort of link, so that you won’t need to reinstall it.

Testing it easy

The skeleton contain a basic command-line interface to test your plugin.
This will eliminate the need to use the library to test it.

Dependencies

If your plugin has any dependencies, you should write this in setup.py.

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	LyricSeek 0.1 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lyricseek	

 	
 	
 lyricseek._pluginsystem	

 	
 	
 lyricseek._run	

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 Navigation

 	
 index

 	
 modules |

 	LyricSeek 0.1 documentation

Index

 G
 | L
 | R
 | S

G

 	

 	get() (in module lyricseek)

 	get_data() (in module lyricseek._run)

 	

 	get_plugins() (in module lyricseek._pluginsystem)

 	get_ready_retrievers() (in module lyricseek._run)

L

 	

 	load_plugins() (in module lyricseek._pluginsystem)

 	lyricseek._pluginsystem (module)

 	

 	lyricseek._run (module)

R

 	

 	register_plugin() (in module lyricseek._pluginsystem)

S

 	

 	set_parallel() (in module lyricseek._run)

 Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 _static/minus.png

_static/comment-bright.png

_modules/lyricseek/_pluginsystem.html

 Navigation

 		
 index

 		
 modules |

 		LyricSeek 0.1 documentation »

 		Module code »

 		lyricseek »

 Source code for lyricseek._pluginsystem

'''
This module provides access to plugins, metadata and other tools
'''
import types

import pkg_resources

plugins = {} # name:class

[docs]def load_plugins():
 '''
 Searches for plugins, and load them into memory.

 .. todo :: support plugin versions
 '''
 for entrypoint in pkg_resources.iter_entry_points('lyricseek.retriever'):
 if entrypoint.name in plugins:
 print 'WARNING: conflicting version of plugin "%s"' % \
 entrypoint.name
 continue
 plugin = entrypoint.load()
 #do some checks
 _check_plugin(plugin)
 plugins[entrypoint.name] = plugin

def _check_plugin(plugin):
 '''Perform some sanity checks'''
 if not hasattr(plugin, 'features') or not plugin.features or\
 not type(plugin.features) in (types.TupleType, types.ListType) or\
 not hasattr(plugin, 'get_data') or not hasattr(plugin, 'name')\
 or not plugin.name or not type(plugin.name) is str:
 print 'WARNING: plugin "%s" doesn\'t comply to the interface.'\
 ' Not loading it' % plugin
 return False
 return True

[docs]def register_plugin(plugin):
 '''
 .. warning :: This is only intended for debug or dirty h4x.
 If unsure, you shouldn't use this

 Register a plugin. Useful to add Retrievers without packing proper eggs

 :arg name: The name of the plugin. In the standard case, this is the name
 of the entrypoint
 :arg plugin: the Retriever class implementing your plugin (must implement
 the interface described in :ref:`retrievers`

 :raises ValueError: If the check on the plugin fails
 '''
 if not _check_plugin(plugin):
 raise ValueError("Plugin check failed")
 plugins[plugin.name] = plugin

[docs]def get_plugins():
 '''
 :returns: name:class dict of plugins (if loaded)
 '''
 if not plugins:
 load_plugins()
 return plugins

 © Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		LyricSeek 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		LyricSeek 0.1 documentation »

 All modules for which code is available

		lyricseek

		lyricseek._pluginsystem

		lyricseek._run

 © Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_modules/lyricseek.html

 Navigation

 		
 index

 		
 modules |

 		LyricSeek 0.1 documentation »

 		Module code »

 Source code for lyricseek

__all__ = ['get']
from _run import get_data as get
#import pluginsystem

 © Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

_modules/lyricseek/_run.html

 Navigation

 		
 index

 		
 modules |

 		LyricSeek 0.1 documentation »

 		Module code »

 		lyricseek »

 Source code for lyricseek._run

'''
Main module: provide simple, ready-to-use functions
to get lyrics
'''
import functools
import multiprocessing
from multiprocessing import dummy as _multiprocdummy
import Queue

import _pluginsystem as pluginsystem

_multiproc = multiprocessing # "back-up" of the module, see set_parallel

[docs]def set_parallel(method):
 '''
 Allows to choose between process based and threading based concurrency

 :arg method: can be 'process' or 'thread'
 :raises ValueError: If an invalid argument is given
 '''
 if method == 'process':
 globals()['multiprocessing'] = _multiproc
 elif method == 'thread':
 globals()['multiprocessing'] = _multiprocdummy
 else:
 raise ValueError('Supported method are "thread" and "multiprocessing"')

[docs]def get_ready_retrievers(artist=None, album=None, title=None, otherinfo=None, \
 request=(), timeout=-1, filename=None, filter_=None):
 '''
 .. note :: this is not meant to be used by the casual user. Use it if
 you are a developer or if you really know what you're doing

 This function will return an iterator over functions that take no arguments
 and will try to get data (that is, retrievers with arguments filled in)

 :param otherinfo: Other metadata, not worthing a function parameter
 :type otherinfo: dict
 :param request: all needed metadata. If empty, all will be searched
 :type request: tuple
 :param timeout: currently not supported
 :rtype: iterator
 '''
 song_metadata = otherinfo if otherinfo else {}
 if artist:
 song_metadata['artist'] = artist
 if album:
 song_metadata['album'] = album
 if title:
 song_metadata['title'] = title

 options = {}
 options['searching'] = request

 for name, plugin in pluginsystem.get_plugins().items():
 if filter_ is not None and name not in filter_:
 continue
 if set(plugin.features).intersection(set(request)):
 yield name, functools.partial(
 plugin.get_data, song_metadata, options)
 return

def _get_analyzer(name):
 '''
 Given a name, return an analyzer function(request, results, response)
 :type name: string
 :raises ValueError: non valid name
 '''
 #TODO: more flexible way (egg-based?)
 if name == 'first_match':
 return _first_match
 else:
 raise ValueError('%s is not a valid analyzer' % name)

def _first_match(request, results, response, best):
 '''
 This analyzer checks only for the first result that satisfies the request.
 '''
 current_best = {}
 while True:
 result = results.get()
 if result == 'finished':
 if current_best:
 response.put(current_best)
 else:
 response.put(None)
 return
 name, status, res = result
 if status != 'ok':
 continue
 for key, value in res.items():
 if key not in current_best and key in request:
 current_best[key] = value
 if best.empty():
 best.put(current_best)
 else:
 best.put(current_best)
 best.get()
 #request is satisfied
 if False not in (x in current_best.keys() for x in request):
 response.put(current_best)
 return
 else:
 print('nooo', res, request, [x in res for x in request], \
 current_best)

[docs]def get_data(artist=None, album=None, title=None, otherinfo=None, \
 request=(), timeout=None, filename=None, analyzer='first_match',
 plugin_filter=None):
 '''
 Get data about a song

 :param otherinfo: Other metadata, not worthing a function parameter
 :type otherinfo: dict
 :param request: all needed metadata. If empty, all will be searched
 :type request: tuple
 :param timeout: timeout in seconds, None for no timeout
 :rtype: dict
 '''
 # retrievers write in results; when every retriever has finished, waiter
 # write in results; analyzer read from results
 results = multiprocessing.Queue()
 # analyzer write in response, main process read (with optional timeout)
 response = multiprocessing.Queue()
 #this is a trick; finished will be filled with useless value, one per
 #process. When a process exits, it will pop. So, finished.join() is
 #equivalent to joining every process; the advantage is that it can be done
 #in a separate process
 finished = multiprocessing.JoinableQueue()

 # even worse trick: every "improvement" analyzer does is written here,
 # and it tries to be the only value, so that main thread can just get()
 best = multiprocessing.Queue()
 if analyzer is None:
 analyzer = 'first_match'
 analyzer = multiprocessing.Process(target=_get_analyzer(analyzer),
 args=(request, results, response, best))
 analyzer.name = 'analyzer'
 analyzer.daemon = True
 analyzer.start()

 def retriever_wrapper(name, retriever, results, finished):
 '''Call a retriever, handle its results'''
 def wrapped():
 '''Provide transparent concurrency for retrievers'''
 finished.get()
 try:
 res = retriever()
 except Exception as exc:
 results.put((name, 'error', exc))
 else:
 results.put((name, 'ok', res))
 finally:
 finished.task_done()
 return wrapped

 processes = []
 for name, retriever in get_ready_retrievers(artist, album, title, \
 otherinfo, request, timeout, filename, filter_=plugin_filter):
 finished.put(True)
 wrapped_retriever = retriever_wrapper(
 name, retriever, results, finished)
 p = multiprocessing.Process(target=wrapped_retriever)
 processes.append(p)
 p.daemon = True
 p.name = name
 p.start()

 def waiter(q, res):
 '''wait for every retriever to join, then unlock main flow'''
 q.join() # when every process has done
 res.put('finished')
 w = multiprocessing.Process(target=waiter, args=(finished, results))
 w.daemon = True
 w.start()

 try:
 res = response.get(block=True, timeout=timeout)
 except Queue.Empty as exc:
 print('no response')
 try:
 best_res = best.get_nowait()
 except Queue.Empty:
 return None
 else:
 print('best I found:', best_res)
 return best_res
 else:
 return res

 © Copyright 2010, Davide Lo Re, Leonardo Barcaroli.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		latest

_static/down-pressed.png

